
F7 Network File System (NFS) http://optics.csufresno.edu/~kriehn/fedora/fedora_files/f7/howto/nfs.html

1 von 8 12.12.2007 14:18

F7 Network/Filesystem Services & Applications — NFS
Department of Electrical and Computer Engineering

Assistant Professor Gregory R. Kriehn

Forums
Wiki

Home | ECE Home | ECE Department Overview | ECE News & Events F7 Table of Contents

F7 Network File Systems (NFS)
Network File System, or NFS, allows partitions, file systems, or directories to be mounted from a remote
server onto a client computer via a local area network. It is extremely useful when you want to, say,

keep user's home directories in a centralized location and serve them out to clients. I use NFS to mount
my home partition and mail directory on my laptop when the ethernet connection is established, and
follow it up with rsync scripts to allow for back-and-forth file synchronization of the local laptop home

directory with the server. I can also mask the laptop from the server otherwise (i.e., when I'm using a
wireless connection) by specifying two domain names for the laptop: [laptop host].[domain name]
and [laptop host].localdomain. The [laptop host].[domain name] host name is used for the

ethernet connection, and [laptop host].localdomain is used for wireless and dsl connections. (This
can be specified in /etc/hosts and via your network settings). This way, I can work remotely if need

be, but keep my entire filesystem synchronized when using my ethernet connection. When I was a
graduate student, my old research professor allowed his file system to repeatedly(!) fracture, meaning
that he had to keep local copies of the server's home directories, his current laptop's home directory,

and his old laptop's home directory on a single hard drive. :p

I also use NFS to backup my entire home directory structure on a remote RAID 5 server. In this case,
my local server acts as a client to the RAID server. Hourly, daily, weekly, and monthly backups are then
a snap, again, using rsync. :)

Setting up NFS Version 3 (I have not bothered to learn V4 yet) requires simultaneous configuration of
the NFS server and client, in addition to poking holes through the firewall to allow for NFS connections
and setting up SELinux correctly. Both the firewall and SELinux should have already been set up. See
the Firewall and SELinux pages for details. And from now on, you should already how to use sudo and
various text editors to make changes to configuration files. I will assume that you can do this easily on
your own from this point forward. See previous web pages (sudo, shell, etc.) for help if you need it.

Server Setup
To start, first configure the server:

Server 1. Add the following entry to /etc/exports:

When you make changes to /etc/exports, you should enter the following command to re-read the

export table:

On the server side, you can decide not to trust any requests made by root on the client. This is done
using the root_squash option in the /etc/exports file. (This is, in fact, the default.) It should always be
turned on unless you have a very good reason not to. To turn it off use the no_root_squash option.

Now, if a user with UID 0 (i.e., root's user number) on the client attempts to access (read, write,

delete) the file system, the server substitutes the UID of the server's "nobody" account. This means that

the root user on the client cannot access or change files that only root on the server can change. This
is good. You should probably use root_squash on all the file systems you export. "But the root user on
the client can still use su to become any other user and access and change that user's files!" you say. To

which the answer is: "Yes, and that's the way it is, and has to be, with Unix/Linux and NFS." This also
has one important implication: all important binaries and other files should be owned by root, and not
bin or other non-root accounts, since the only account the client's root user cannot access is the
server's root account. In the exports(5) man page, there are several other squash options listed so
that you can decide to mistrust whomever you (don't) like on the client computers.

The TCP ports 1-1024 are reserved for root's use (and therefore are sometimes referred to as "secure

ports"). A non-root user cannot bind these ports. Adding the secure option to an /etc/exports means

that it will only list requests coming from ports 1-1024 on the client, so that a malicious non-root user on
the client cannot come along and open up a spoofed NFS dialog on a non-reserved port. This option is
set by default.

Server 2. Add the following entry to /etc/hosts.deny:

/home [ip address of client computer](rw,root_squash)
/var/spool/mail [ip address of client computer](rw,root_squash)

~> sudo exportfs -rv

F7 Network File System (NFS) http://optics.csufresno.edu/~kriehn/fedora/fedora_files/f7/howto/nfs.html

2 von 8 12.12.2007 14:18

If you have configured NFS on RedHat/Fedora before, you will notice that portmap is missing in Fedora

7. This is simply because rpcbind is now being used in its place, which now contains the portmapper
utility.

The portmapper keeps a list of what services are running on what ports. When an RPC service is started,

it tells rpcbind the address at which it is listening, and the RPC program numbers it is prepared to

serve. When a client wishes to make an RPC call to a given program number, it first contacts rpcbind on
the server machine to determine the address where RPC requests should be sent. Basically, the
portmapper via rpcbind maintains a list that is used by a connecting machine to see what ports it wants

to talk to to access certain services.

The portmapper is not in as bad a shape as a few years ago, but it is still a point of worry for many

system admins. The portmapper, like NFS and NIS, should not really have connections made to it

outside of a trusted local area network. If you have to expose them to the outside world — be careful,
and keep up diligent monitoring of those systems. Therefore, by editing the /etc/hosts.deny file,
everyone is denied access to portmap, lockd, mountd, etc., which are all used for NFS connections. The
files /etc/hosts.allow and /etc/hosts.deny take effect immediately after you save them. No daemon

needs to be restarted.

Closing the portmapper to everyone is a bit drastic, so we will open it again (slightly) by editing
/etc/hosts.allow. It should basically list all machines that should have access to your portmapper. On
a run-of-the-mill Linux system, there are very few machines that need any access for any reason. The
portmapper administrates nfsd, mountd, ypbind/ypserv, rquotad, lockd (which shows up nowdays as
nlockmgr), statd (which now shows up as status) and "r" services like ruptime and rusers. Of these,
only nfsd, mountd, ypbind/ypserv, and perhaps rquotad, lockd, and statd are of any consequence.
Only machines that need to access services on your machine should be allowed to.

IMPORTANT: Do not put anything but IP NUMBERS in the lines of these files. Host name lookups can

indirectly cause portmapper activity which will trigger host name lookups. This can indirectly cause

portmapper activity, which will trigger...

Server 3. Based upon the above information, add the following entry to /etc/hosts.allow:

As previously mentioned, this prevents hosts from other networks from connecting to any of the
NFS-related daemons.

NOTE: In speaking with Vijay Rao, we have come to the conclusion that the current version of
rpcbind that is being used in Fedora 7 (0.1.4-6.fc7) lacks libwrap support, meaning that rpcbind is
not properly honoring /etc/hosts.{allow|deny}. This means that rpcbind will bind to a specific UDP
interface, but not discriminate between TCP interfaces, making the above entries to /etc/hosts.deny
and /etc/hosts.allow kind of pointless. I did not notice the problem earlier, because the TCP ports

were already locked down by our College firewall. However, Vijay did find out the following information
about rpcbind:

• rpcbind is based upon Sun's rpcbind/sunrpc code.
• Wietse Venema originally added libwrap support to rpcbind.
• Wietse's additions added bugs, and subsequent versions of rpcbind removed libwrap support.

If you want, you can compile rpcbind from the source .rpm file. The package does not allow libwrap to
be easily configured at compile time, but other linux distributions apparently have a patch for this:

http://lists.pld-linux.org/mailman/pipermail/pld-cvs-commit/Week-of-Mon-20070507/154482.html

Personally, I have chosen not to recompile rpcbind, simply because the TCP Ports are already blocked

by our College's firewall. However, if security is an issue, I would strongly suggest compiling rpcbind by
hand until a new version is released that fixes this problem.

Server 4. Setting up NFS to use Fixed IP Ports.

When setting up a firewall for Linux systems running NFS, you hit the problem that some of the TCP/IP
and UDP ports used by components of the services are randomly generated as part of the Remote
Procedure Call (RPC) mechanism. On a system that is running with the NFS service active, the ports

used by the components of the services can easily be listed using:

lockd:ALL
mountd:ALL
rpcbind:ALL
rquotad:ALL
statd:ALL

lockd:[ip address of client #1],...,[ip address of client #N]
mountd:[ip address of client #1],...,[ip address of client #N]
rpcbind:[ip address of client #1],...,[ip address of client #N]
rquotad:[ip address of client #1],...,[ip address of client #N]
statd:[ip address of client #1],...,[ip address of client #N]

F7 Network File System (NFS) http://optics.csufresno.edu/~kriehn/fedora/fedora_files/f7/howto/nfs.html

3 von 8 12.12.2007 14:18

The output will look something like:

The listing shows the IP ports for the various versions of the services used in the 4th column. If you view

this listing on different systems, or even after rebooting the same one, you will find that most of the port
numbers are different. This is a real problem when configuring the firewall, which tends to assume that
known port numbers are used for the services being configured. To make it possible to configure a
firewall that effectively controls NFS, it is useful to be able to "tie" down the ports used by these services
(portmap, lockd, mountd, rquotad, and statd) to fixed values.

The following table lists the needed NFS daemons and summarizes the relevant information for each of
the necessary ports. The subsections that follow provide more detail for tying them down, if necessary.

Daemon Name RPM Package Standard Port Suggested Port What to Change

portmapper rpcbind 111 111 Nothing

rpc.statd nfs-utils Random 4000 /etc/sysconfig/nfs

rpc.nfsd nfs-utils 2049 2049 Nothing

rpc.lockd nfs-utils/kernel Random 4001 /etc/modrpobe.conf*

rpc.mountd nfs-utils Random 4002 /etc/sysconfig/nfs

rpc.rquotad quota Random 4003 /etc/sysconfig/nfs

*rpc.lockd cannot be configured in /etc/sysconfig/nfs, as it is compiled as a kernel module in

Fedora 7.

NOTE: Now you can understand why we previously poked holes in the firewall using very specific port
numbers for NFS. Again, see the Firewall page for details.

Server 4.1 Portmapper [Standard Port: 111]

As of Fedora 7, the portmapper is implemented by the rpcbind program, which is part of the "rpcbind"
RPM package. The service uses Port 111 on both the TCP and UDP Internet Protocols.

The portmapper provides the mapping between application names and IP ports, and is therefore

analogous to the /etc/services file except that it relates to Remote Procedure Call (RPC) programs

only.

Firewall rules that refer to portmapper should reference TCP/IP and UDP packets on Port 111.

Server 4.2 Network Status Monitor [Random Port — Suggested Port: 4000]

The rpc.statd server implements the Network Status Monitor (NSM) RPC protocol. This service is

somewhat misnamed, since it does not actually provide active monitoring, as one might suspect.
Instead, NSM implements a reboot notification service. It is used by the NFS file locking service,
rpc.lockd, to implement lock recovery when the NFS server machine crashes and reboots.

The rpc.statd program is part of the "nfs-utils" RPM package.

While rpc.statd is normally allocated a random port number by the portmapper, it is possible to

configure a fixed port by supplying the appropriate variable name to /etc/sysconfig/nfs:

Once the above change has been made, firewall rules should refer to TCP/IP and UDP packets on the
chosen port.

~> rpcinfo -p

 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100024 1 udp 32814 status
 100024 1 tcp 33024 status
 100011 1 udp 670 rquotad
 100011 2 udp 670 rquotad
 100011 1 tcp 673 rquotad
 100011 2 tcp 673 rquotad
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100021 1 udp 32816 nlockmgr
 100021 3 udp 32816 nlockmgr
 100021 4 udp 32816 nlockmgr
 100005 1 udp 32818 mountd
 100005 1 tcp 33025 mountd
 100005 2 udp 32818 mountd
 100005 2 tcp 33025 mountd
 100005 3 udp 32818 mountd
 100005 3 tcp 33025 mountd

STATD_PORT=4000

F7 Network File System (NFS) http://optics.csufresno.edu/~kriehn/fedora/fedora_files/f7/howto/nfs.html

4 von 8 12.12.2007 14:18

Server 4.3 NFS Daemon [Standard Port: 2049]

The rpc.nfsd program implements the user-level part of the NFS service. The main functionality is

handled by the nfsd.o kernel module; the user-space program merely starts the specified number of

kernel threads.

The rpc.nfsd program normally listens on Port 2049, so firewall rules can be created to refer to that

port (unless it is changed from the default value). If you want to change it, edit /etc/sysconfig/nfs
and supply a port number using the STATD_OUTGOING_PORT variable. Just remember that if you do

change it, you will need to update the firewall rules to reflect this.

Server 4.4 NFS Lock Manager [Random Port — Suggested Port: 4001]

The NFS lock manager is a kernel module. It implements the NLM (NFS Lock Manager) part of the NFS
subsystem, and is used for handling file and resource locks of various types. This component is
sometimes referred to as "rpc.lockd", and shows up in the output of rpcinfo as "nlockmgr" (hey -
consistency would only make life boring!).

On systems where the lock manager is implemented as a loadable module, as is the case for Fedora

Core 6, the port number used can be set at module load time, and is configured by adding (or editing) a
line in /etc/modprobe.conf:

This sets the UDP and TCP/IP Port numbers. Conventionally, these two numbers should be set to the
same value.

If your system has the the lockd code compiled into the main kernel binary rather than as a loadable
module, then the settings in /etc/modprobe.conf will not work. You will need to add the parameters

"lockd.udpport=4001 lockd.tcpport=4001" to the kernel command line in the lilo or grub
configuration file instead.

NOTE: In order for the changes to take effect, the module must be reloaded if it is already in use. You

can use the commands rmmod and modprobe to reload the lockd module; however if there are module

dependencies currently in use, a system restart may be required. For me this was the case, so go ahead
and give your system a reboot also.

Technically, these options could be set in /etc/sysconfig/nfs as well, but only if lockd is not loaded
as a kernel module. If you want to try it, add the following lines to /etc/sysconfig/nfs:

As before, configure the Firewall to manage the port number just selected for both the TCP/IP and UDP

Ports.

Server 4.5 Mount [Random Port — Suggested Port: 4002]

The rpc.mountd program implements the NFS mount protocol. When receiving a mount request from an

NFS client, it checks the request against the list of currently exported file systems. If the client is
permitted to mount the file system, rpc.mountd obtains a file handle for the requested directory and
returns it to the client.

While rpc.mountd is normally allocated a random port number by the portmapper, it is possible to

configure a fixed port number by supplying the "-p" command line option when the program is

launched. This is done by editing /etc/sysconfig/nfs:

Once this edit has been made, configure the firewall to manage the port number selected for both
TCP/IP and UDP Ports.

Server 4.6 Quota [Random Port — Suggested Port: 4003]

rquotad is an RPC server that returns quotas for a user of a local filesystem mounted by a remote

machine over NFS. It also allows setting of quotas on an NFS mounted filesystem. The results are used
by quota to display user quotas for remote filesystems and by edquota to set them. The rquotad
daemon is normally started at boot time from the system startup scripts.

There are two versions of rpc.rquotad that are commonly used with Linux systems: one is part of

nfs-utils, and the other comes bundled with the "quota" package. You can fix the port number by

editing /etc/sysconfig/nfs:

options lockd nlm_udpport=4001 nlm_tcpport=4001

LOCKD_TCPPORT=4001
LOCKD_UDPPORT=4001

MOUNTD_PORT=4002

F7 Network File System (NFS) http://optics.csufresno.edu/~kriehn/fedora/fedora_files/f7/howto/nfs.html

5 von 8 12.12.2007 14:18

Once this change has been made, configure the Firewall to manage the TCP/IP and UDP Port number
selected.

Server 5. Configuring the Firewall (If you have not already!)

The firewall configuration file is found in /etc/sysconfig/iptables. Holes must be poked through Ports

111, 2049, and 4000:4003 for both the TCP and UDP Internet Protocols. See the Firewall page for
details.

As a final note, make sure that the "REJECT" and the "COMMIT" lines mentioned are the very last lines at

the end of the file and are not found elsewhere. Otherwise, when the rules are implemented, everything
after "COMMIT" will be ignored and NFS will not work if the "REJECT" line is located before the NFS ones.
Once the changes are made to the firewall, restart it:

Server 6. Start portmapper, the NFS daemon, and the other related daemons:

With all of the changes made, we are ready to start up the appropriate daemons:

You should not see any "FAILED" messages when you restart the daemons if you set everything up

correctly. Everything should be "OK".

Server 7. Verification

Make sure everything is working properly. Let's check the RPC information to make sure that all of the
ports are tied down correctly:

You should see something similar to:

Notice that all of the daemons are now tied down to their appropriate port numbers. If nlockmgr is
misbehaving, it is because it's being loaded as a kernel module and you will need to reboot. :(

Next, check the mount information to verify that the appropriate directories will be exported:

You should see something like:

RQUOTAD_PORT=4003

~> sudo service iptables restart

~> sudo service portmap restart
~> sudo service nfs restart
~> sudo service nfslock restart

~> rpcinfo -p

 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100024 1 udp 4000 status
 100024 1 tcp 4000 status
 100021 1 udp 4001 nlockmgr
 100021 3 udp 4001 nlockmgr
 100021 4 udp 4001 nlockmgr
 100021 1 tcp 4001 nlockmgr
 100021 3 tcp 4001 nlockmgr
 100021 4 tcp 4001 nlockmgr
 100011 1 udp 4003 rquotad
 100011 2 udp 4003 rquotad
 100011 1 tcp 4003 rquotad
 100011 2 tcp 4003 rquotad
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 4 udp 2049 nfs
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs
 100003 4 tcp 2049 nfs
 100005 1 udp 4002 mountd
 100005 1 tcp 4002 mountd
 100005 2 udp 4002 mountd
 100005 2 tcp 4002 mountd
 100005 3 udp 4002 mountd
 100005 3 tcp 4002 mountd

~> showmount -e

F7 Network File System (NFS) http://optics.csufresno.edu/~kriehn/fedora/fedora_files/f7/howto/nfs.html

6 von 8 12.12.2007 14:18

The netstat -tauap command will also give you a good idea of which TCP and UDP ports are listening

for connections.

Verify that the portmapper and all NFS-related daemons start at boot time. You can do this using
system-config-services via sudo, or with the following commands:

Again, you should make sure that the firewall settings for iptables are properly set so that the
connections are not automatically blocked!

With that, the NFS server should now be setup.

Client Setup
Configuring the client computer is much easier. The client must be running the portmapper service and
the rpc.statd service. If you need file locking, you must also be running the NFS lock daemon

rpc.lockd. You do not need to be running rquotad, nfsd, or mountd. By running /etc/init.d/portmap
and /etc/init.d/nfslock, everything should be ready for an NFS mount, after making some additional

changes:

Client 1. Add the following entry to /etc/hosts.deny:

Client 2. Add the following entry to /etc/hosts.allow:

Client 3. Tie down the necessary ports.

portmap is already tied down to Port 111, so tie down rpc.statd by editing /etc/sysconfig/nfs:

Client 4. Configuring the firewall.

Since the client only needs to be running portmap and nfslock, the only ports that need opening are
TCP and UPD Ports 111 and 4000. Modify the firewall configuration file, /etc/sysconfig/iptables:

Again, make sure that the "REJECT" and "COMMIT" lines are the very last lines at the end of the file and
are not found elsewhere. Then, reload the firewall rules:

Export list for [server hostname]:
/home [client ip address #1],...,[client ip address #N]
/var/spool/mail [client ip address #1],...,[client ip address #N]

~> sudo chkconfig portmap off
~> sudo chkconfig nfs off
~> sudo chkconfig nfslock off

~> sudo chkconfig --level 345 portmap on
~> sudo chkconfig --level 345 nfs on
~> sudo chkconfig --level 345 nfslock on

lockd:ALL
mountd:ALL
rpcbind:ALL
rquotad:ALL
statd:ALL

lockd:[ip address of server]
mountd:[ip address of server]
rpcbind:[ip address of server]
rquotad:[ip address of server]
statd:[ip address of server]

STATD_PORT=4000

Allow NFS Connections
-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 111 -j ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 4000 -j ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m udp -p udp --dport 111 -j ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m udp -p udp --dport 4000 -j ACCEPT

-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited
COMMIT

~> sudo service iptables restart

F7 Network File System (NFS) http://optics.csufresno.edu/~kriehn/fedora/fedora_files/f7/howto/nfs.html

7 von 8 12.12.2007 14:18

Client 5. Verification

Check RPC connectivity to the NFS server from the client. The following commands will be helpful. Make
sure they are being run from the client computer:

Based on the output of these commands, you should be able to see if the client will be able to make an
NFS connection to the server or not.

Also, make sure that the portmap and the nfslock daemons start at boot time:

Remember: You do not need the NFS daemon on the client!

Client 6. Mount Points

Make specific mount points for the directories to be mounted. I like to mount everything in /mnt:

Next, we need to let the netfs service know that it is supposed to mount the NFS directories. This is

done by first editing /etc/fstab:

The rw option allows the client to both read and write to the mounted directory. The hard option ensures
that a process or program accessing a file on an NFS mounted file system cannot be interrupted or killed
if the server crashes (which causes the system to hang), unless we specify the intr option, which we
have done. When the NFS server is back online, the program will continue uninterrupted where it left
off. The other possibility is to use the soft option, but this leads to corrupted files and data loss. :(
Finally, the bg option allows the client to continue to try to mount the directories in the background if it

cannot establish a connection to the server, allowing for NFS to gracefully fail instead of just hanging the
computer. This is an extremely useful option for my laptop, since it often is being used on some wireless
network where I do not have access to the server.

Client 7. Mount the directories!

From now on at boot time, if the client can establish a connection to the server, the NFS directories will
be mounted. To mount the NFS file systems now, we simply restart the netfs (Network File Systems)

service:

If everything is setup properly, you should see something similar to:

You can now change your directory to, say, /mnt/nfs/[server]/home on the client computer and you

will access /home on the server. Yeah!

References:
http://www.redhat.com/magazine/010aug05/departments/tips_tricks
http://www.lowth.com/LinWiz/nfs_help.html
http://www.vanemery.com/Linux/NFS-Van.html
http://nfs.sourceforge.net/nfs-howto/

Home | ECE Home | ECE Department Overview | ECE News & Events F7 Table of Contents

~> ping [server]
~> showmount -e [server]
~> rpcinfo -p [server]
~> tracepath [server]/2049

~> sudo chkconfig portmap off
~> sudo chkconfig nfs off
~> sudo chkconfig nfslock off

~> sudo chkconfig --level 345 portmap on
~> sudo chkconfig --level 345 nfslock on

~> sudo mkdir /mnt/nfs/[server]/home
~> sudo mkdir /mnt/nfs/[server]/mail

[server]:/home /mnt/nfs/[server]/home nfs rw,hard,intr,bg 0 0
[server]:/var/spool/mail /mnt/nfs/[server]/mail nfs rw,hard,intr,bg 0 0

~> sudo service netfs restart

Mounting NFS filesystems: [OK]
Mounting other filesystems: [OK]

F7 Network File System (NFS) http://optics.csufresno.edu/~kriehn/fedora/fedora_files/f7/howto/nfs.html

8 von 8 12.12.2007 14:18

